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In detection theory, stochastic resonance refers to a class of randomness-enhanced phenomena
concerning signal processing. Stochastic resonance was first proposed to explain the periodic ice
ages of Earth. While originally defined in a narrow context, the usefulness of stochastic resonance
to describe behavior observed in physical systems has led to an expansion of the definition. This
report will consider the two systems extensively studied in the literature: bistable and excitable
systems. Manifestations of stochastic resonance are observed in numerical simulations of these
systems using Wolfram Mathematica 11.

I. INTRODUCTION

The term stochastic resonance appeared in a 1981 pa-
per concerning the periodic behavior of the Earth’s ice
ages [1]. (The term had been used prior to 1981 to refer
to an unrelated phenomenon [2].) The term, as it is used
today, is meant “...to describe any phenomenon where
the presence of internal noise or external input noise in a
nonlinear system provides a better system response to a
certain input signal than in the absence of noise” [2]. The
occurrence of stochastic resonance in a system is easily
understood from the curve in Fig. 1. The requirement
that the system be nonlinear comes from the fact that
in a linear system (linear referring to the output signal
being a linear transform of the input signal) the output
signal has an optimal signal-to-noise ratio (SNR) when
no noise is present.

While SNR can be used to quantify stochastic reso-
nance, it is not always an appropriate measure. Other
forms of measurement of output performance include
spectral power amplification, correlation coefficient, mu-
tual information, and Kullback entropy.

Stochastic resonance falls under a class of randomness-
enhanced phenomena, with many examples in literature
prior to the 1981 paper from Benzi, et al. [1]. For
stochastic resonance, the phenomenon that is enhanced
by randomness is a signal, and only occurs in this con-
text. That is, stochastic resonance achieves maximal per-
formance in the output signal when there is a presence
of noise.

II. HISTORICAL OVERVIEW

The field of stochastic resonance began to grow shortly
after the publication of Ref. [1] in 1981. However, it
has been shown that Peter Debye’s 1929 publication on
the dielectric properties of polar molecules in a solid [4]
can be reinterpreted to encompass stochastic resonance
[5]. This is the earliest known analytical result for the
susceptibility of a fluctuating symmetrical system with
two coexisting stable states [2].

Early on, stochastic resonance was a term only used
in the context of a bistable system driven by a combina-

tion of a periodic force and random noise. Observation
in experiment came from two different bistable systems:
In 1983 stochastic resonance was observed in a Schmitt
trigger electronic circuit [6], and in 1988 stochastic reso-
nance was observed in a bidirectional ring laser [7]. Both
systems are bistable systems, leading some to believe
that bistability was a necessary condition for stochas-
tic resonance to occur. Using linear response theory, it
was shown that stochastic resonance can occur without
bistability [5]. Experimental observation of stochastic
resonance in a monostable system occurred in 1993 [8].

From 1993 to 1996, the field of stochastic resonance
expanded considerably. No longer constrained to the
context of a bistable system, stochastic resonance was
applied to investigation of neural systems and excitable
systems. After 1996, the main developments led to the
discovery of aperiodic stochastic resonance, where ape-
riodic input signals can showcase stochastic resonance.
Modern applications of stochastic resonance are too ex-
tensive to detail in this report. The reader is directed to
Ch. 2 of Ref. [2] for a descriptive outline of applications.

FIG. 1. A qualitative plot of output performance vs. noise
magnitude. Contrary to intuition, a peak in performance is
observed when noise is nonzero. (Image taken from Ref. [3].)
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III. BISTABLE SYSTEMS

A bistable system with a reflection-symmetric, quartic
potential energy can be modeled as:

U(x) = −a
2
x2 +

b

4
x4, (1)

with a, b > 0. A simplification of this continuous poten-
tial is a discrete two-state system. Let us begin by de-
veloping a description of the discrete case, then develop
the continuous case.

In the presence of a periodic driving signal, stochas-
tic resonance will occur when the period of the signal
is matched to some characteristic time of the system.
Kramers’ rate, rK , can be used to characterize the sys-
tem in the absence of the driving signal. (That is, the
characteristic escape rate from a well of the potential in
the absence of a driving signal.) The inverse of Kramers’s
rate gives the average time between hopping events. In-
tuitively, the period of the driving signal should be twice
the inverse of Kramer’s rate to optimize the probability of
noise-induced hopping events. The intuition: the driving
signal modifies (“tilts”) the minima of the potential, with
each of the two minima being raised (at different times)
during one period of the driving signal. This is the time-
scale matching condition for stochastic resonance [9].

A. Discrete Two-State System

Consider a general case of a two-state system with
known transition rates: W±(t). The transition rates are
a function of input noise and possibly other parameters.
For the following description to hold, the adiabatic limit
must hold. That is, the frequency of the driving signal
is much lower than the inverse of some relaxation time
in the system. In this double-well system, the relaxation
time is given by the time it takes for probability to equi-
librate within one well [10].

The dynamics can be described with the master equa-
tion (in integer state space):

ṅ± = −W∓(t)n± +W±(t)n∓, (2)

where n±(t) is the probability the system occupies the ±
state at time t. The solution to Eq. 2 is given in Ref. [9]
as:

n±(t) = g(t)

[
n±(t0) +

∫ t

t0

W±(τ)g−1(τ)dτ

]
,

g(t) = exp

[
−
∫ t

t0

W+(τ) +W−(τ)dτ

]
,

(3)

where n±(t0) is an initial condition. To proceed any fur-
ther, the transitions rates of interest must be known.

B. Continuous Bistable Potential

If the system of interest has a continuous bistable po-
tential, e.g., Eq. 1, a Fokker-Planck description of the
dynamics can be applied. Let us start with the Langevin
equation modeling a Brownian particle of mass m mov-
ing in a bistable potential U(x), exposed to thermal noise
ξ(t) of the Nyquist type at temperature T, with a peri-
odic perturbation term in the rate equation:

mẍ =

−mγẋ− U ′(x) +mAcos(Ωt+ φ) +
√

2mγkTξ(t),
(4)

where x represents the state of the system, γ is the fric-
tion coefficient, and k is the Boltzmann constant [9]. For
the external forcing term, A is the amplitude, Ω is the
angular frequency, and φ is the initial phase. The noise
term, ξ(t), has properties:

〈ξ(t)〉 = 0,

〈ξ(t)ξ(t+ τ)〉 = δ(τ).
(5)

A two-dimensional Fokker-Planck equation can be de-
rived from Eq. 4:

∂

∂t
p(x, v, t;φ) =

{
− ∂

∂x
v +

∂

∂v
[γv − U ′(x)

m
−Acos(Ωt+ φ)] +

γD
∂2

∂v2

}
p(x, v, t;φ),

(6)

where v = ẋ and D = kT
m .

In the case of large friction, Eq. 4 is reduced by ap-
plying adiabatic elimination on the velocity variable, v.
While the general, rigorous application of adiabatic elim-
ination is too extensive to outline here (see Ref. [11]), it
suffices to consider Eq. 4 when |γẋ| � |ẍ|. This consid-
eration results in an overdamped Langevin equation:

γẋ = −U
′(x)

m
+ +Acos(Ωt+ φ) +

√
2γDξ(t) (7)

The mass variable, m, is absorbed into a and b of Eq. 1,
then variables are rescaled:

x̄ = x/xm, t̄ = at/γ, Ā = A/axm

D̄ = D/ax2
m, Ω̄ = γΩ/a.

(8)

where xm =
√
a/b is the distance of both minima of U(x)

from the origin. The resulting dimensionless Fokker-
Planck equation is given by:

∂

∂t̄
p(x̄, t̄;φ) = [L0 + Lext(t̄)]p(x̄, t̄;φ),

L0 = − ∂

∂x̄
(x̄− x̄3) + D̄

∂2

∂x̄2
,

Lext(t̄) = −Ācos(Ω̄t̄+ φ)
∂

∂x̄
,

(9)
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which is the Smoluchowski limit of Eq. 6. This is to
be expected due to applying adiabatic elimination, as
the Smoluchowski limit procedure is the prototype to all
adiabatic elimination [12].

C. Kramers’ Rate

If the driving signal is absent in Eq. 7, then there
will still be a small probability for a transition to occur.
Kramers’ method [13] is used to derive the average time,
TK , for the system to transition from one potential well
to the other. The inverse of TK is Kramers’ rate:

rK =

√
U ′′(a)|U ′′(0)|

2π
exp(−∆U/D). (10)

where ∆U is the barrier height.
As a consequence of ignoring the driving signal, the

derived value of D below will be independent of ampli-
tude, A, when applying the time-scale matching condi-
tion. Clearly, stochastic resonance will depend on A, so
Kramers’ rate only gives an approximation to the dy-
namic rate of hopping events.

D. Example

Let us look at a simple example of stochastic resonance
in an overdamped bistable potential given by scaling Eq.
7 to be dimensionless:

ẋ = x− x3 +Acos(Ωt) +
√

2Dξ(t) (11)

where the bars above the variables has been dropped,
φ = 0, and

√
γ/a has been absorbed into ξ(t). The

rescaled noise, ξ(t), will have the same properties given
in Eq. 5. The rescaled potential is given by Eq. 1 with
a = b = 1, where minima occur at xm = ±1. There is
also a local maximum at x = 0. The difference in U(x) at
the minimum and maximum defines the barrier height,
which is found to be ∆U = 1

4 .
The dynamics of the system are investigated by con-

sidering various values of the noise intensity, D, in Fig.
2. In the absence of noise, the driving signal is not strong
enough to cause the system to transition from one min-
imum to the other. Likewise, the noise is not strong
enough (in a probabilistic sense) to cause a transition.
However, when both the driving signal and the noise are
present, there exists a nonzero probability of the system
making a transition.

At the beginning of this section, it was pointed out that
stochastic resonance occurs when the time-scale match-
ing condition (2TK = TΩ) is achieved. Using Eq. 10:

2
√

2πe∆U/D =
2π

Ω
, (12)

from which the optimal noise magnitude is derived as:

D =
−∆U

ln(
√

2Ω)
. (13)

FIG. 2. Solutions to Eq. 11 with x(0) = −1, A = 0.43,
Ω = 0.2, with increasing noise amplitude, D. Transitions are
identified when the signal crosses x = 0

It is required that Ω < 1√
2

so that D is positive.

The following analysis is qualitative due to necessarily
long computations times required to evaluate output sig-
nal quality. For purposes of comparison, the noise term
ξ(t) is the same random variable in each plot of Fig 2.
Only the noise magnitude D is different. For simulations,
the values used are x(0) = −1, A = 0.43, and Ω = 0.2.

First, let us examine a solution to Eq. 11 where D
is small. In Fig. 2(a), the system exhibits a transition,
though it does not appear to be periodic. (Transitions
are identified when the signal crosses x = 0.) However,
there are clearly time intervals of stability, so D should
be close to the choice of noise magnitude that optimizes
stochastic resonance. In Fig. 2(c), the predicted optimal
noise magnitude determined from Eq. 13 is used. There
are many transitions, where periodicity is not immedi-
ately apparent, but there are time intervals of stability.
In Fig. 2(d), the noise magnitude is too large, and, as a
consequence, the hopping events are seemingly-chaotic.
Turning our attention to Fig. 2(b), there appears to be
approximately 3 periods of a periodic signal. Of course,
further computation would need to be performed to con-
firm the periodicity of this signal.

To give an interpretation of the model, let us examine
Benzi’s research on the Earth’s ice ages [1, 14, 15]. In that
description, the bistable potential represents the Earth’s
climate, with each of the two minima representing the
glacial and interglacial periods. The driving signal is in-
terpreted to be small planetary gravitational perturba-
tions in the orbital eccentricity of Earth, occurring on
a time scale of approximately 105 years. The noise can
be attributed to annual fluctuation in solar radiations.
In fact, variation in solar energy influx is approximately
0.1%, so modeling the fluctuations as a seemingly-small
amount of noise is appropriate. The theory proposes that
the variation in solar energy influx is of appropriate mag-
nitude to cause stochastic resonance, which results in pe-
riodic ice ages.
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IV. EXCITABLE SYSTEMS

Initially, only bistable systems had been the subject
of stochastic resonance research. Historically, excitable
systems were the next focus of research [9]. An excitable
system has only one stable state, but can transition into a
nonstable excited state when some threshold within the
system is overcome. The excited state will decay on a
time scale that is long compared to the relaxation rate of
small perturbations about the stable state.

Longtin applied stochastic resonance in excitable sys-
tems to neuron models in 1993 [16]. The development
of stochastic resonance in excitable and threshold dy-
namical systems spawned the application of stochastic
resonance in neurophysiology [9].

To understand stochastic resonance in excitable sys-
tems, consider two types of signals: subthreshold and
suprathreshold. In a subthreshold system, the input sig-
nal does not cross some threshold for signal detection to
be possible. By adding noise to a system, signals that
would have been undetectable can now cross the thresh-
old of detection. In a suprathreshold system, the input
signal partially crosses the threshold of detection, though
the detection may not accurately represent the entire sig-
nal.

Stochastic resonance can occur in the case of a periodic
input signal or an aperiodic input signal, but the method
of recovering the signal is different in either case. Periodic
signals will be consider in this section. The treatment of
aperiodic signals can be shown, but SNR will have no
meaning in this context. Instead, Shannon mutual in-
formation is used as the measure of stochastic resonance
[17].

A. Subthreshold System Example

In a subthreshold system with periodic input signal,
stochastic resonance can occur when noise is added to the
system so that the signal may now cross the threshold of
the detector. To reconstruct the signal, it is sampled at
some specified rate and signal interpretation rules out-
lined in Refs. [18, 19] are used. If the sample point is
above the threshold, but the previous sample point was
below threshold, then it is register as a crossing (quan-
tified simply as 1). This is a threshold crossing with
positive slope. No other sequence of sample points regis-
ters as a crossing in this algorithm (quantified as 0). A
periodogram is used to approximate the spectral power
density of the resulting sequence of zeros and ones. If
stochastic resonance has occurred, it will manifest in the
frequency components of the input signal in the spectral
power density.

To give an example, a periodic input signal x(t) is dis-
torted with additive white Gaussian noise. The choice of
periodic signal is given by:

x(t) = sin
(
0.5t

)
+ sin

(
2t
)
. (14)

FIG. 3. A periodic signal (a) without noise and (c) with
noise. The yellow line in (a) and (c) represents the detection
threshold. In (b) the signal (ignoring the detection thresh-
old) is sampled 104 times at integer values of t to produce the
estimated power spectrum. The two frequency components
of the signal manifest as peaks. In (d) the power spectrum
is estimated from the signal with noise (applying the detec-
tion threshold) sampled 104 times at integer values of t then
converted into binary (as described elsewhere).

In the absence of noise, the output signal y(t) is equal
to the input signal. The output signal with no noise
is shown in Fig. 3(a). The yellow line represents the
threshold above which the output signal can be detected.
The output signal never crosses the threshold value, so it
cannot be detected. In Fig. 3(b), the detection threshold
is ignored, so the power spectrum of the input signal
can be used for comparison. Clearly, the two frequency
components of Eq. 14 are observed: ω1 = 0.5s−1 and
ω2 = 2s−1.

In Fig. 3(c), the input signal is subjected to zero-
mean internal noise ξ(t) with autocorrelation given by
〈ξ(t)ξ(t+τ)〉 = 4δ(τ). The signal as shown is constructed
by sampling the signal with noise at integer values of t.
Threshold crossings are more probable to occur when the
input signal is close to the threshold value, and less prob-
able to occur when the input signal is near its minimum.

The output signal used in Fig. 3(d) was sampled 104

times, where the detection threshold is used. Clearly,
the two signal frequencies are recovered, but at a loss of
2 magnitudes of power.

B. Optimal Stochastic Resonance in Subthreshold
Systems

To computationally test for optimal stochastic reso-
nance in a subthresold system, an input signal, x(t) =
sin(1.25t), is used with a simulated detector with a
threshold equal the signals amplitude (x = 1). Zero-
mean noise with autocorrelation given as 〈ξ(t)ξ(t+τ)〉 =
2Dδ(τ) is added to the signal. As D is varied, the height
of the ω = 1.25s−1 peak above the spectral background
is measured. In this example, the profile of the noise ξ(t)
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FIG. 4. Stochastic Resonance in an subthreshold system for
varying noise amplitude, D. Compare with the qualitative
curve in Fig. 1

is randomized for each value of D tested. This is done to
show that the exact profile of the noise is not important

when testing for stochastic resonance.

The signal detection process described in the previous
subsection was followed for 12 different values of D. In
Fig. 4, the approximate spectral peak height (arbitrary
units) is plotted as a function of D. The observed output
performance curve is similar to that in Fig. 1.
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